Remarkable features of ovarian morphology and reproductive hormones in insulin-resistant Zucker fatty (fa/fa) rats
نویسندگان
چکیده
BACKGROUND Zucker fatty (fa/fa) rats are a well-understood model of obesity and hyperinsulinemia. It is now thought that obesity/hyperinsulinemia is an important cause of endocrinological abnormality, but to date there have been no reports on the changes in ovarian morphology or the ovarian androgen profile in rat models of obesity and insulin resistance. METHODS In this study we investigated the effects of obesity and hyperinsulinemia on ovarian morphology and the hormone profile in insulin-resistant Zucker fatty rats (5, 8, 12 and 16 weeks of age, n = 6-7). RESULTS Ovaries from 5-week-old fatty rats had significantly greater total and atretic follicle numbers, and higher atretic-to-total follicle ratios than those from lean rats. Ovaries from 12- and 16-week-old fatty rats showed interstitial cell hyperplasia and numerous cysts with features of advanced follicular atresia. In addition, serum testosterone and androstenedione levels significantly declined in fatty rats from age 8 to 16 weeks, so that fatty rats showed significantly lower levels of serum testosterone (12 and 16 weeks) and androstenedione (all weeks) than lean rats. This may reflect a reduction of androgen synthesis during follicular atresia. Serum adiponectin levels were high in immature fatty rats, and although the levels declined significantly as they matured, it remained significantly higher in fatty rats than in lean rats. On the other hand, levels of ovarian adiponectin and its receptors were significantly lower in mature fatty rats than in lean mature rats or immature fatty rats. CONCLUSIONS Our findings indicate that ovarian morphology and hormone profiles are significantly altered by the continuous insulin resistance in Zucker fatty rats. Simultaneously, abrupt reductions in serum and ovarian adiponectin also likely contribute to the infertility seen in fatty rats.
منابع مشابه
Increased fatty acid uptake and altered fatty acid metabolism in insulin-resistant muscle of obese Zucker rats.
Altered muscle fatty acid (FA) metabolism may contribute to the presence of muscle insulin resistance in the genetically obese Zucker rat. To determine whether FA uptake and disposal are altered in insulin-resistant muscle, we measured palmitate uptake, oxidation, and incorporation into di- and triglycerides in isolated rat hindquarters, as well as muscle plasma membrane fatty acid-binding prot...
متن کاملPioglitazone is effective for multiple phenotyepes of the Zucker fa/fa rat with polycystc ovary morphology and insulin resistance
BACKGROUND Hyperandrogenism and insulin resistance may be related to the etiology of PCOS. Zucker fa/fa rats with polycystic ovary are obese, have insulin resistance without diabetes mellitus or hyperandrogenism and can be utilized as PCOS model rats without effects of hyperandrogenemia. PCOS patients are reported to have elevated levels of serum anti-Mullerian hormone (AMH), which has an inhib...
متن کاملA Novel Rat Model of Type 2 Diabetes: The Zucker Fatty Diabetes Mellitus ZFDM Rat
The Zucker fatty (ZF) rat harboring a missense mutation (fatty, fa) in the leptin receptor gene (Lepr) develops obesity without diabetes; Zucker diabetic fatty (ZDF) rats derived from the ZF strain exhibit obesity with diabetes and are widely used for research on type 2 diabetes (T2D). Here we establish a novel diabetic strain derived from normoglycemic ZF rats. In our ZF rat colony, we inciden...
متن کاملDevelopment of insulin resistance and hyperphagia in Zucker fatty rats.
The onset of hyperphagia in the Zucker fatty (fa/fa) rat occurs on a single day in postnatal development and could be driven by an increase in insulin sensitivity. To test this hypothesis, we performed insulin tolerance tests at several points in development. In rapidly growing juvenile rats, fatty rats are as insulin sensitive as lean rats at 4 wk of age but become increasingly insulin resista...
متن کاملImproved metabolic status and insulin sensitivity in obese fatty (fa/fa) Zucker rats and Zucker Diabetic Fatty (ZDF) rats treated with the thiazolidinedione, MCC-555.
1. We examined the effect of chronic (21 days) oral treatment with the thiazolidinedione, MCC-555 ((+)-5-[[6-(2-fluorbenzyl)-oxy-2-naphy]methyl]-2,4-thiazo lid inedione) on metabolic status and insulin sensitivity in obese (fa/fa) Zucker rats and Zucker Diabetic Fatty (ZDF) rats which display an impaired glucose tolerance (IGT) or overt diabetic symptoms, respectively. 2. MCC-555 treatment to o...
متن کامل